LGL1, a novel branching morphogen in developing kidney, is induced by retinoic acid.
نویسندگان
چکیده
Late-gestation lung protein 1 (LGL1) is a glycoprotein secreted by fetal lung mesenchyme that stimulates branching morphogenesis of the developing lung bud. We show that Lgl1 mRNA and protein are also expressed in mesenchymally derived lineages of fetal kidney. Although Lgl1 expression is stimulated by glucocorticoids in kidney cells, cortisol (10(-7) M) actually suppresses ureteric bud branching of fetal kidneys from HoxB7/GFP mice in explant culture. However, early branching morphogenesis in the lung and kidney is stimulated by retinoic acid, and we identified putative retinoic acid response elements in the Lgl1 promoter. All-trans-retinoic acid (10(-6) M) stimulated Lgl1 promoter activity and endogenous Lgl1 mRNA expression in vitro. Branching of cultured fetal kidney explants was increased in the presence of all-trans retinoic acid (10(-6) M). Heterozygous Lgl1 knockout mice were crossed to HoxB7/GFP mice to visualize the extent of ureteric bud branching at fetal stages. At embryonic (E) days E12.5-E13.0, mutant Lgl1(+/-) embryos showed a 20% reduction in ureteric bud branching compared with wild-type littermates. We propose a model in which retinoic acid stimulates branching morphogenesis by activating Lgl1 early in development. The prominent effects of glucocorticoids on Lgl1 expression in late lung development suggest a second role for LGL1 in alveolar maturation.
منابع مشابه
Co-administration of retinoic acid and atorvastatin mitigates high-fat diet induced renal damage in rats
Obesity causes many problems such as cardiovascular and chronic kidney diseases. The aim of this study was to evaluate the efficacy of retinoic acid and atorvastatin co-administration in kidneys protection against high-fat diet induced damage. Twenty-five male Wistar rats (200.00 ± 20.00 g) were divided into five groups: 1) Control (standard diet), 2) High-fat diet (cholesterol 1.00%, 75 days),...
متن کاملLgl1, a mesenchymal modulator of early lung branching morphogenesis, is a secreted glycoprotein imported by late gestation lung epithelial cells.
Secreted glycoproteins serve a variety of functions related to cell-cell communication in developmental systems. We cloned LGL1, a novel glucocorticoid-inducible gene in foetal lung, and described its temporal and spatial localization in the rat. Disruption of foetal mesenchyme-specific LGL1 expression using antisense oligodeoxynucleotides, which was associated with a 50% decrease in lgl1 prote...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملLGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestatio...
متن کاملMechanism of alcohol-induced impairment in renal development: Could it be reduced by retinoic acid?
1. Prenatal alcohol exposure impairs kidney development, resulting in a reduced nephron number. However, the mechanism through which alcohol acts to disrupt renal development is largely unknown. Retinoic acid (RA) is critically involved in kidney development and it has been proposed that a diminished concentration of RA is a contributing factor to fetal alcohol syndrome. 2. In the present study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007